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Summary: ACRL toxin IIIb (1) has been prepared by 
total synthesis. The synthesis demonstrates a general 
strategy for preparing compounds containing three ste- 
reocenters having an [n, n + 1, n + 41 relationship. 

The phytopathogenic fungus, Alternaria citri, a causal 
agent of brown spot disease of Rough lemons and Rang- 
pur limes, produces several host specific toxins, called 
the ACRL toxins I-IV.l Because the natural toxins are 
unstable, they have been characterized as the pyrone 
methyl ethers, which are known as ACRL toxins Ib, IIb, 
IIIb, and IVb. In this paper, we report a total synthesis 
of ACRL toxin IIIb (1h2 

0 

1 

The synthesis began with the known P-tert-butylthio- 
acrolein (2),3,4 which was converted by the Evans proto- 
c015 into aldol 3.6 The chiral auxiliary was removed by 
successive treatment of 3 with lithium benzyloxide and 
diisobutylaluminum hydride. The primary hydroxy group 
of diol 4 was selectively tritylated and the resulting 
hydroxy ether acylated with propionic anhydride to 
obtain 5. This allyl ester was subjected to conditions of 
the Ireland ester enolate Claisen rearrangement7 to 
obtain carboxylic acid 6 in excellent yield.a Treatment 
of acid 6 with NJV-carbonyldiimidazole and N-meth- 
oxymethylamine gave the Weinreb amide, which was 
treated at  low temperature with (E)-2-lithio-2-butene, 
prepared by metalation of (E)-2-bromo-2-butene9 with 
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tert-butyllithium in ether. The resulting enone (7) was 
reduced with sodium borohydride in the presence of 
cerium(II1) chloride to obtain alcohol 8 as an 8:l mixture 
of diastereomers (only the major isomer is shown in 
Scheme 1). Allyl sulfide 8 was oxidized by m-chloroper- 
oxybenzoic acid to the sulfoxide, which was treated with 
trimethyl phosphite in methanol to  obtain 9, having four 
of the five stereocenters of ACRL toxin III.'O The two 
secondary hydroxy groups were protected as tert-bu- 
tyldimethylsilyl ethers, and the trityl group was removed 
by reaction with zinc bromide in methylene chloride'l to 
obtain 10, which was oxidized to aldehyde 11 by the 
Dess-Martin procedure.12 

To add the a-pyrone ring of the ACRL toxins, we 
employed the tetrahydropyranyl ether of 4-hydroxy-6- 
methyl-2-pyrone (12).13 Treatment of 12 with LDA in 
THF-HMPA, followed by addition of aldehyde 11, pro- 
vided a 1:l mixture of diastereomeric alcohols (13). This 
material was oxidized by the Dess-Martin procedure to 
a homogeneous ketone (14). Attempts to  reduce 14 with 
L-Selectride resulted only in deprotonation of the acidic 
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(a) N-propionyloxazolidone derived from (lS,2R)-(+)-norephedrine, BuzOTf, Et(i-Pr)zN, CH2C12; (b) (i) PhCHzOLi, THF, 0 "C, (ii) 
DIBAL, -78 "C; (c) (i) Ph3CC1, DMAP, EtsN, CHzC12, (ii) (CH3CH2CO)zO; (d) (i) LDA, THF, -78 "C, (ii) TBSCl, HMPA, (iii) -78 "C - 65 
"C; (e) Nfl-carbonyldiimidazole, MeONHMsHCl; (D (E)-2-lithio-2-butene, ether, -78 "C - -40 "C; (g) NaBH4, CeC13, DMSO; (h) m-CPBA, 
CH2C12, -78 "C; (i) P(OMe13, MeOH (i) TBDMSOTf, EtsN, CHzC12, -78 "C; (k) ZnBrz, CHzC12; (1) S03C5HsN, Et3N, DMSO, CH2C12; (m) 
LDA, HMPA, 11; (n) Dess-Martin, CH2Clz; ( 0 )  8:8:1 HOAc, THF, HzO; (p) L-Selectride; (q) CH2N2, ether; (r) HFCsHsN, THF. 

position between the carbonyl group and pyrone ring: 

+&A OTHP 

14 

L-Selectrid;" 4 OTHP 

This problem was solved by removal of the THP group, 
which was accomplished by treatment of 14 with aqueous 
acetic acid. Reduction of the resulting deprotected 
compound provided two diastereomeric alcohols in a ratio 
of 51. Methylation of the pyrone hydroxy group and 
removal of the tert-butyldimethylsilyl groups gave com- 
pound 1 in 55% overall yield from ketone 14. The 
synthetic ACRL toxin IIIb was identified by comparison 
with an authentic sample kindly provided by Dr. Kono. 

The synthesis of 1 reported here requires 16 steps and 
proceeds with an overall yield of approximately 4%. More 
importantly, the synthesis illustrates a basic strategy for 
preparing compounds containing three stereocenters that 
have a [n, n + 1, n + 41 relationship (e.g., 9). The 
technique should be general for preparing such synthons 
with any stereochemistry desired, since one can begin 
with either a syn or anti aldol (of either chirality) and 
employ either the E or 2 enolate in the Ireland ester 
enolate Claisen rearrangement. 
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